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Extended Summary

Abstract. System identification in nonstationary environment repre-
sents a challenging problem and an advaned neural architecture namely
Time-Varying Neural Networks (TV-NN) has shown remarkable iden-
tification properties in nonlinear and nonstationary conditions. Time-
varying weights, each being a linear combination of a certain set of basis
functions, are used in such kind of networks instead of stable ones, which
inevitalbly increases the number of free parameters. Therefore, an Ex-
treme Learning Machine (ELM) approach is developed to accelerate the
training procedure for TV-NN. What is more, in order to obtain a more
compact structure, or determine several important parameters, or update
the network more efficiently in online case, several variants of ELM-TV
are proposed and discussed in the works. Related computer simulations
have been carried out and show the effectiveness of the algorithms.

1 Introduction

Extreme Learning Machine (ELM) is a fast learning algorithm designed for sin-
gle hidden layer feedforward neural networks (SLFNs) [1], first introduced by
Huang et al. In ELM, the input weights of SLFNs do not need to be tuned and
can be randomly generated, whereas the output weights are analytically deter-
mined using the least-square method, thus allowing a significant training time
reduction. In recent years, ELM has been raising much attention and interest
among scientific community, in both theoretic study and applications: A hybrid
algorithm called Evolutionary Extreme Learning Machine (E-ELM) [2] uses the
differential evolutionary algorithm to select the input weights. Incremental-based
Extreme Learning Machine algorithms (I-ELM [3], EI-ELM [4] and EM-ELM [5])
can randomly add nodes to the hidden layer. A real-coded genetic algorithm ap-
proach called RCGA-ELM has been also proposed to select the optimal number
of hidden nodes, input weights and bias values for better performance in multi-
category sparse data classification problems [6]. B-ELM is able to optimize the
weights of the output layer based on a Bayesian linear regression [7]. The Opti-
mally Pruned Extreme Learning Machine (OP-ELM) extends the original ELM
algorithm and wraps it within a methodology using a pruning of the neurons [8].
In CFWNN-ELM, composite functions are applied at the hidden nodes and
learning is accomplished using ELM in a wavelet neural network [9]. Encoding
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a priori information to obtain better generalization performance for function
approximation is another possible way to improve ELM [10]. Radial-basis type
neural networks [11, 12] also represent a fertile field where ELM paradigm has
found application, as confirmed by some recent contributions[13, 1]. Among the
various extensions, the online sequential learning algorithm based on ELM (OS-
ELM) need to be cited, according to which learning is performed by using data
one-by-one or chunk-by-chunk with fixed or varying chunk size [14]. The param-
eters of hidden nodes are randomly selected just as ELM, but the output weights
are analytically updated based on the sequentially arriving data rather than the
whole data set. Besides theoretical studies, some applications such as system
identification and real-time data assessment have been considered to evaluate
the effectiveness of ELM [15, 16].

Time-Varying Neural Network (TV-NN) represents a relevant example in
neural architectures working properly in nonstationary environments. Such net-
works implement time-varying weights, each being a linear combination of a
certain set of basis functions, whose independent variable is time. The candidate
orthogonal basis function types employed in time-varying networks include Leg-
endre polynomials, Chebyshev polynomials, Fourier sinusoidal functions, Prolate
spheroidal functions, and more. An extended Back-Propagation algorithm has
been first advanced to train these networks (BP-TV) [17]. Later on, an Extreme
Learning Machine approach is also developed for TV-NN, accelerating the train-
ing procedure significantly (ELM-TV) [18].

2 Extreme Learning Machine

Let’s assume that an SLFN with I input neurons, K hidden neurons, L out-
put neurons and activation function g(·) is trained to learn N distinct samples
(X,T), where X = {xi[n]} ∈ R

N×I and T = {tl[n]} ∈ R
N×L are the input

matrix and target matrix respectively, xi[n] denotes the input data in i-th in-
put neuron at n-th time instant, and tl[n] denotes the desired output in l-th
output neuron at n-th time instant. In ELM, the input weights {wik} and hid-
den biases {bk} are randomly generated, where wik is the weight connecting i

input neuron to k-th hidden neuron, and bk is the bias of k-th hidden neuron.
Further let w0k = bk and x0[n] = 1. Hence, the hidden-layer output matrix
H = {hk[n]} ∈ R

N×K can be obtained by:

hk[n] = g

(

I
∑

i=0

xi[n] · wik

)

(1)

Let β = {βkl} ∈ R
K×L be the matrix of output weights, where βkl denotes

the weight connection between k-th hidden neuron and l-th output neuron; and
Y = {yl[n]} ∈ R

N×L be the matrix of network output data, with yl[n] the
output data in l-th output neuron at n-th time instant. Therefore, this equation
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can be obtained for the linear output neurons:

yl[n] =
K
∑

k=1

hk[n] · βkl (2)

or Y = H · β (3)

Thus, given the hidden-layer output matrix H and the targets matrix T, to
minimize ‖Y−T‖2, the output weights can be calculated by the minimum norm
least-square(LS) solution of the linear system:

β̂ = H† · T, (4)

where H† is the MP generalized inverse of matrix H. By computing output
weights analytically, ELM achieve good generalization performance with speedy
training phase.

3 ELM for Time-varying Neural Networks

The time-varying version of Extreme Learning Machine has been studied in [18].
In a time-varying neural network as shown in Fig. 1, the input weights, or output
weights, or both are changing with time (both in training and testing phases).
The generic weight w[n] can be expressed as a linear combination of a certain
set of basis function [19, 17]:

w[n] =
B
∑

b=1

fb[n]wb (5)

in which fb[n] is the known orthogonal function at n-th time instant of b-th order,
wb is the b-th order coefficient of the basis function to construct time-varying

x0[n] = 1 g(·)

x1[n] g(·) y1[n]

...
...

...

xI [n] g(·) yL[n]
wik[n] βkl[n]

Fig. 1. Architecture of Time-Varying Neural Networks

weight wn, while B (preset by user) is the total number of the bases.
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If time-varying input weights are introduced in a SLFN, the hidden neuron
output function can be written as:

hk[n] = g

(

I
∑

i=0

xi[n] · wik[n]

)

(6)

where wik[n] =
∑B

b=1 fb[n]wb,ik. Similarly, if time-varying output weights are
introduced, the standard output equation can be written as:

yl[n] =
K
∑

k=1

hk[n]βkl[n] (7)

where βkl[n] =
∑B

b=1 fb[n]βb,kl.
To train a TV-NN, input weights {wb,ik} are randomly generated and hidden-

layer output matrix H is computed according to equation (6). However, the
values of a set of output weight parameters {βb,kl} can not be so straightfor-
ward calculated. Some transformations are needed. Expanding the time-varying
output weights βkl[n] in (7) and assuming:

f [n] = [f1[n], f2[n], . . . , fB [n]]T ∈ R
B ,

h[n] = [h1[n], h2[n], . . . , hK [n]]T ∈ R
K ,

βkl = [β1,kl, β2,kl, . . . , βB,kl]
T ∈ R

B ,

β(l) = [β1l,β2l, . . . ,βKl] ∈ R
B×K ,

ω(l) = [βT
1l,β

T
2l, . . . ,β

T
Kl] ∈ R

B·K×1,

the following hold:

yl[n] =

K
∑

k=1

hk[n] ·

(

B
∑

b=1

fb[n] · βb,kl

)

=

K
∑

k=1

f [n]T · βkl · hk[n]

= f [n]T · β(l) · h[n]

=
(

h[n]T ⊗ f [n]T
)

· ω(l) (8)

where ⊗ denotes the Kronecker product of h[n]T and f [n]T . The last step consists
in: vec(AXB) = (BT ⊗A)vec(X) [20], (note that vec(yl[n]) = yl[n]) and ω(l) =
vec(β(l)) is the vectorization of the matrix β(l) formed by stacking the columns
of β(l) into a single column vector. Moreover, let’s define:

G = H ∗ F =





h[1]T ⊗ f [1]T

· · ·
h[N ]T ⊗ f [N ]T





N×B·K

(9)
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where H = [h[1],h[2], . . . ,h[N ]]T ∈ R
N×K , F = [f [1], f [2], . . . , f [N ]]T ∈ R

N×B ,
∗ denotes the Khatri-Rao product of matrices H and F, with h[n]T and f [n]T

as their submatrices, respectively. Further assuming that Y = {yl[n]} ∈ R
N×L,

T = {tl[n]} ∈ R
N×L, Ω = [ω(1),ω(2), . . . ,ω(L)] ∈ R

B·K×L, the following holds:

G · Ω = Y (10)

Since F is obtained by the type of the basis function predetermined by the
user and H can be calculated by (6) once input weight parameters are randomly
generated, hence G can be computed. Similarly to the ELM algorithm described
in previous section, the time-variant output weight matrix Ω can be computed
by:

Ω̂ = G† · T (11)

where G† is the MP inverse of matrix G, and consequently, Ω̂ is a set of optimal
output weight parameters minimizing the training error.

4 Group Selection Evolutionary ELM for TV-NNs

Similar to the standard ELM algorithm, the training of TV-NNs based on ELM
requires relatively large amount of hidden neurons than that based on BP [18],
due to the random generation of input weight parameters set. Moreover, when
dealing with TV-NN we need to decide which type of the basis function has
to be applied to the model. If the optimal input weight parameters set and
the right type of basis function are selected, one may obtain good generalized
performance with less hidden nodes (K) and less orders (B) of basis function,
hence a compact network and faster response in the test phase. In this section, an
algorithm named GSE-ELM-TV combined GS approach, DE algorithm and MP
generalized inverse is proposed. We assume that TV-NN is trained by the FTV-
ELM-NN: the proposed approach can be easily extended to the OTV-ELM-NN
and ITV-ELM-NN case studies.

Firstly, we randomly generate the population, in which each individual con-
sists of a set of input weight and bias parameters:

θ =[w1,01, w1,02, . . . , w1,0K , w1,11, w1,12, . . . ,

w1,1K , . . . , w1,IK , . . . , w2,IK , . . . , wB,IK ]

Here, we consider the biases {bbk} as special weights {wb,0k}. All wb,ik (b =
1, 2, . . . , B; i = 0, 1, . . . , I; k = 1, 2, . . . ,K) are randomly initialized within the
range of [−1, 1]. We also denote Q as the dimension of the individual vector:
Q = B · (I + 1) · K.

Secondly, we divide the population into several groups equally, and denote
the population in each group as Pg. The amount of the groups Mg is set to
be equivalent to the amount of available basis functions, so that each group
represents one basis function type. This attribute addressed in each group can
also be viewed as group gene, like culture in human society. Competition occurs
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not only among individuals in each group, but also among groups along the
whole evolution process. Only the fittest individuals and groups can survive
from generation to the next.

Then, for each set of input weight parameters in each group, use its corre-
sponding basis function type to compute hidden-layer output matrix H with (6),
and then calculate the output weights Ω̂ analytically by MP generalized inverse
with (11) just as ELM-TV algorithm does, followed by computing network out-
put matrix Y using (7) or (10). Finally evaluated the fitness of each individual
in each group f(θp,m), p = 1, 2, . . . , Pg;m = 1, 2, . . . ,Mg, e.g. root mean squared
error(RMSE).

Now we introduce the concept of Group Fitness, and choose the best indi-
vidual fitness in a specific group according to:

F (Θm) = f(θbest,m)

where Θm = [θ1,m,θ2,m, . . . ,θPg,m] represents the set of all the individuals in
m-th group, and θbest,m is the individual with the best fitness of all in m-th
group.

Once all the fitness of individuals in each group are computed, apply muta-
tion, crossover and individual selection of DE, the same as in E-ELM algorithm,
followed by the final step group selection to form a new generation.

Group Selection: Compare the computed f(γp,m,G+1) among each group and
obtain group fitness F (Γ m,G+1) of every group, which are then sorted out in the
next step. The group with worst fitness is wiped out and replaced by that of
best fitness, e.g. the groups for next generation are finally obtained by this rule:

Θm,G+1 =

{

Γ Best,G+1 ,if F (Γ m,G+1) = F (Γ Worst,G+1)

Γ m,G+1 ,otherwise

Once new groups are generated, repeat the DE and GS process until the goal
is met or a preset maximum learning epochs are completed. The summarized
algorithm is shown in Algorithm 1.

Actually, it is not necessary to apply GS in every interaction of DE. For
instance, we can introduce a frequency parameter d, and allow the algorithm
to perform GS in every d interactions. So we have this algorithm named Group
Selection Evolutionary ELM for Time-Varying neural networks (GSE-ELM-TV).

A simple time-varying system is constructed for simulations:

y[n] = g(w[n] · x[n])

where g(·) is a sigmoid activation function g(x) = 1
1+e−x , and w[n] is a single

time-variant coefficient, which is combination of 3 prolate function bases, w[n] =
∑3

b=1 fb[n] · wb, with setting wb = 0.5, b = 1, 2, 3. The inputs are normalized
(within the range [−1, 1]).

In BP-TV simulations, we compare different parameters(number of hidden
nodes, type of basic function, and number of epochs), and list the best results
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Algorithm 1 GSE-ELM-TV

1: Randomly generate individuals θp,m,1 of Pg ·Mg;
2: repeat

3: Apply ELM-TV algorithm for Ωp,m,G and f(θp,m,G);
4: Apply DE algorithm;
5: if G ≡ 0 (mod d) then

6: Obtain F (Θm,G+1) and apply GS.
7: end if

8: G← G + 1;
9: until G = Gmax or F (ΘBest,G) 6 FGoal

10: θbest,Best,G; Ωbest,Best,G is the solution.

with 150 epochs in Table 1. More hidden nodes are not helping for generalization
performance in BP-TV. In ELM-TV simulations, hidden neurons are gradually
increase with every 5 nodes and the best testing accuracies are selected as the fi-
nal ones. We also test E-ELM-TV, which is Evolutionary ELM for Time-Varying
NNs without GS, hence requiring selecting the basis function manually. Theo-
retically, only one hidden neuron is needed for the GSE-ELM-TV model to learn
this TV perceptron system. The results of E-ELM, BP-TV, ELM-TV, E-ELM-
TV and GSE-ELM-TV with different parameters are listed in Table 1, from
which we can easily notice that though E-ELM-TV with Prolate basis function
can achieve better testing accuracy with less training time than GSE-ELM-TV;
but if improper basis type like Chebyshev or Legendre is selected, much worse
performances would be obtained. Also note that varying the population size,
the used generations, and/or the hidden nodes number in GSE-ELM-TV, we
may reduce the training time with different testing performances. This allows
us concluding that the proposed approach provides a flexible tradeoff between
training time and number of hidden nodes (hence networks complexity).

5 Incremental-based ELM for TV-NNs

5.1 I-ELM-TV and EI-ELM-TV

It is proved in [3] and [4] that for one specific output neuron, when the k-

th hidden neuron is added and βk =
h̃

T
k ·ẽk−1

h̃T
k
·h̃k

, ‖ẽk‖ = ‖t̃ − (t̃k−1 + βkh̃k)‖

achieves its minimum and the sequence {‖ẽk‖} decreases and converges. Note

that βk =
h̃

T
k ·ẽk−1

h̃T
k
·h̃k

, is a special case of βk = h̃
†
kẽk−1 when ẽk−1 and h̃k are

vectors. Actually, the MP generalized inverse of h̃k is just h̃
†
k = (h̃T

k · h̃k)−1h̃T
k

For our time-variant case, this can also be extended to matrix computations.

Let δΩk =





β1,k1, · · · , β1,kL

· · · , · · · , · · ·
βB,k1, · · · , βB,kL





B×L

and δGk =





hk[1] · f [1]T

· · ·
hk[N ] · f [N ]T





N×B

,
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Algorithm Training Training Testing Hidden
Time (s) RMSE(dB) RMSE(dB) neurons

E-ELM 6.66 -12.69 -12.77 1
BP-TV(Prolate;Epoch=150) 173.31 -21.92 -22.07 1

ELM-TV(Prolate) 0.17 -80.39 -77.86 50
ELM-TV(Legendre) 0.19 -72.65 -71.16 60

ELM-TV(Chebyshev) 0.20 -74.82 -71.30 65
E-ELM-TV(Prolate) 374.72 -124.37 -124.41 1

E-ELM-TV(Legendre) 375.94 -20.55 -20.57 1
E-ELM-TV(Chebyshev) 375.64 -20.62 -20.62 1

GSE-ELM-TV(Gen=20;P=600) 380.92 -105.41 -105.35 1
GSE-ELM-TV(Gen=5;P=300) 46.46 -28.61 -28.57 1
GSE-ELM-TV(Gen=5;P=100) 51.98 -75.50 -72.87 30

Table 1. Performance comparisons of E-ELM, BP-TV, ELM-TV, E-ELM-TV and
GSE-ELM-TV in Time-Varying Perceptron System

(Note Ω =





δΩ1

· · ·
δΩK



 and G = [δG1, · · · , δGK ].) Similarly, if δΩk = δG
†
k · Ek−1,

‖Ek‖ = ‖T− (Tk−1 + δGkδΩk)‖ achieve its minimum and the sequence {‖Ek‖}
would decrease and converges.

It is noted in [4] that some newly added hidden nodes may make residual
error reduce less than others. In the Enhanced I-ELM method, at any step,
among P trial of hidden nodes, the hidden nodes with greatest residual error
reduction is chosen and added. This method is also applied in this work.

Hence, we have our time-variant version of I-ELM and EI-ELM. Assume
we have a set of training data {(x[n], t[n])}N

n=1, the target output matrix T,
the residual matrix E, the maximum number of hidden nodes Kmax, and the
expected learning accuracy ǫ. We get Algorithm 2.

5.2 EM-ELM-TV

Similarly, with certain transformation, Error Minimized ELM approach can also
be extended in time-variant case. Replace H0, δHm, β with G1,δGk, Ω, respec-
tively, we get our time-variant version of EM-ELM. For the sake of presentation
clarity, we only add hidden nodes one by one in our proposed EM-ELM-TV
algorithm, which can be easily generalized to the group-by-group node addition
means.

Assume we have a set of training data {(x[n], t[n])}N
i=1, the target matrix T,

the residual matrix Ek = GkG
†
kT − T, the maximum number of hidden nodes

Kmax, and the expected learning accuracy ǫ. We get Algorithm 3.
The performance comparison in terms of necessary hidden nodes between

ELM-TV and EM-ELM-TV, has been conducted in these time-varying systems.
The target training RMSE(dB) ǫ are set as: -40 for perceptron system, -35 for
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Algorithm 2 I-ELM-TV(in the case of P = 1) and EI-ELM-TV

1: Let k = 0 and residual error E = T,
2: while k < Kmax and ‖E‖ > ǫ, do

3: Increase by one the number of hidden nodes: k = k + 1;
4: for p = 1 : P do

5: Assign random input weight and bias {w(p)b,ik} for new hidden node;
6: Calculate the hidden layer output submatrix for new hidden node

δG(p) =





h(p)k[1] · f [1]T

· · ·
h(p)k[N ] · f [N ]T





N×B

7: Calculate the output weight δΩ(p) for the new hidden node

δΩ(p) = δG
†

(p) ·E

8: Calculate the residual error after adding the new hidden node k:

E(p) = E− δG(p) · δΩ(p)

9: end for

10: Let p∗ = {p|min16p6P ‖E(p)‖}.
11: Set E = E(p∗), {wb,ik = w(p∗)b,ik}, and δΩk = δΩ(p∗).
12: end while

13: The output weight matrix would be Ω =





δΩ1

· · ·
δΩK





B·K×L

MLP system and -18 for Narendra system. The optimal number of hidden nodes
for ELM-TV is obtained by trial-and-error. Table 2 displays performance evalu-
ation between ELM-TV and EM-ELM-TV, since I-ELM-TV and EM-ELM-TV
are not able to reach the training goals of them within 500 nodes. Focusing on
the MLP and Narendra Systems case studies for reasons explained above, results
reported in Table 2 prove that EM-ELM-TV has similar generalization perfor-
mance and optimal number of hidden nodes attainable with ELM-TV, but at
reduced training time. Therefore, EM-ELM-TV is able to optimally select the
number of hidden nodes more efficiently than the trial-and-error approach typi-
cally used in common ELM-TV, as well as concluded in the time-invariant case.

6 Online Sequential ELM for TV-NNs

All the training data (N samples) have to be available before using the batch
algorithm ELM-TV stated in previous chapters. However, in some applications,
the neural networks may receive the training data sequentially, or large amount
of data to process in limited memory at the same time. Therefore, it is therefore
convenient to develop an online algorithm for TV-NN.
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Algorithm 3 EM-ELM-TV

1: Randomly generate one hidden node.
2: Calculate the time variant hidden layer output matrix G1 by (6) and (5):

G1 =





h1[1] · f [1]T

· · ·
h1[N ] · f [N ]T





N×B

3: Calculate the output error ‖E1‖ = ‖G1G
†
1T−T‖.

4: Let k = 1
5: while k < Kmax and ‖Ek‖ > ǫ, do

6: Randomly add another hidden node. The corresponding hidden layer output
matrix becomes Gk+1 = [Gk, δGk], where

δGk =





hk[1] · f [1]T

· · ·
hk[N ] · f [N ]T





N×B

7: Update the output weight Ω

Dk = ((I−GkG
†
k)δGk)†

Uk = G
†
k −G

†
kδGkDk

Ω
(k+1) = G

†
k+1T =

[

Uk

Dk

]

T

8: k = k + 1
9: end while

It is here assumed that the number of samples N is large and the rank of
time-varying hidden matrix R(G) = K · B, i.e. the number of hidden nodes by
the number of output bases; G† in (11) can be expressed as:

G† = (GT G)−1GT (12)

Given the initial training set {(x[n], t[n])}N0

n=1 it is assumed that the number
of samples is larger than the number of hidden nodes by the number of output
bases, e.g. N0 > K · B. Using batch ELM-TV, according to (11) the optimal
output weight matrix would be:

Ω(0) = G
†
0 · T0 = (GT

0 G0)
−1GT

0 T0 = C−1
0 A0 (13)

where C0 = GT
0 G0;A0 = GT

0 T0;

G0 =







h[1]T ⊗ f [1]T

...
h[N0]

T ⊗ f [N0]
T







N0×K·B

; and T0 =







t[1]T

...
t[N0]

T







N0×L

(14)
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Systems Algorithms Training Testing Hidden
[stop RMSE(dB)] Time (s) RMSE(dB) Nodes

Perceptron [-40]
ELM-TV 0.0775 -41.80 13.7

EM-ELM-TV 0.1166 -41.75 13.2

MLP [-35]
ELM-TV 3.0707 -30.69 197.7

EM-ELM-TV 0.3463 -30.07 203.8

Narendra [-18]
ELM-TV 0.2039 -16.13 48.1

EM-ELM-TV 0.1604 -16.75 49.5

Table 2. Performance Comparisons of ELM-TV and EM-ELM-TV for the Num-
ber(average of 10 trials) of Hidden Nodes When the Expected Accuracy is Reached

Let’s suppose that another chunk of data {(x[n], t[n])}N0+N1

n=N0+1 arrives, the opti-
mal output weight matrix has to be modified as:

Ω(1) = C−1
1 A1 (15)

where

C1 =

[

G0

G1

]T [

G0

G1

]

=
[

GT
0 GT

1

]

[

G0

G1

]

= C0 + GT
1 G1 (16)

A1 =

[

G0

G1

]T [

T0

T1

]

=
[

GT
0 GT

1

]

[

T0

T1

]

= A0 + GT
1 T1 (17)

G1 =







h[N0 + 1]T ⊗ f [N0 + 1]T

...
h[N0 + N1]

T ⊗ f [N0 + N1]
T







N1×K·B

;T1 =







t[N0 + 1]T

...
t[N0 + N1]

T







N1×L

(18)

The aim here is to express Ω(1) as a function of Ω(0),C1,G1 and T1. Accord-
ing to (13) and (16), A0 can be written as:

A0 = C0C
−1
0 A0 = (C1 − GT

1 G1)Ω
(0) = C1Ω

(0) − GT
1 G1Ω

(0) (19)

Combining (15),(16),(17), and (19), the following can be obtained:

Ω(1) = C−1
1 (C1Ω

(0)−GT
1 G1Ω

(0)+GT
1 T1) = Ω(0)+C−1

1 GT
1 (T1−G1Ω

(0)) (20)

Since C−1
1 is used for computing Ω(1), then by setting P0 = C−1

0 and P1 = C−1
1 ,

and using the Woodbury formula [21] the following can be derived:

P1 = (C0 + GT
1 G1)

−1 = P0 − P0G
T
1 (I + G1P0G

T
1 )−1G1P0 (21)

Generalizing the previous arguments, when m-th chunk of data set arrives:

Pm = Pm−1 − Pm−1G
T
m(I + GmPm−1G

T
m)−1GmPm−1 (22)

Ω(m) = Ω(m−1) + PmGT
m(Tm − GmΩ(m−1)) (23)
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When the training data is received one-by-one instead of chunk-by-chunk, e.g.
Nm = 1, the above formula have the following simple format:

Pm = Pm−1 −
Pm−1gmgT

mPm−1

1 + gT
mPm−1gm

(24)

Ω(m) = Ω(m−1) + Pmgm(tT
m − gT

mΩ(m−1)) (25)

where gm = (hT
m ⊗ fT

m)T

Now, our proposed online algorithm, namely OS-ELM-TV can be summa-
rized as follows. Assume that a single hidden layer time-varying neural network is
to be trained, with K hidden nodes and B output basis functions, and receiving
the training data set {(x[n], t[n])} sequentially. Algorithm 4 is thus attained.
Note that the time invariant OS-ELM algorithm is just a special case of the
proposed OS-ELM-TV (when B = 1).

Algorithm 4 OS-ELM-TV

1: Randomly generate the input weights set {ωb,ik} and choose a set of basis funtions.
2: Accumulate N0 samples of training data (make sure N0 > K ·B).
3: Calculate the time-varying hidden layer output matrix G0 by (14)
4: Calculate P0 = (GT

0 G0)
−1

5: Calculate the initial output weight matrix Ω(0) by (13)
6: for m = 1 to M do

7: When the m-th chunk of data arrives, calculate the time-varying partial hidden
layer output matrix Gm.

8: Update the output weight matrix Ω(m) by,

Pm = Pm−1 −Pm−1G
T
m(I + GmPm−1G

T
m)−1

GmPm−1 (26)

Ω
(m) = Ω

(m−1) + PmG
T
m(Tm −GmΩ

(m−1)) (27)

9: m← m + 1
10: end for

In practice, in order to apply OS-ELM-TV, N0 > 1.2KB is usually chosen
to make sure R(G) = KB and GT G a full rank matrix so that P0 exists and
Pm can be computed recursively. In some applications, the selected parameters
K and B can not be too large, otherwise there would occur that R(G) < KB

and the online algorithm might likely diverge.
The results of Electricity Load Estimation [22] are depicted in Table 3. The

numbers in parentheses in first column of the tables represent the numbers of
basis functions in input and output layers. Such results show that OS-ELM-TV
has comparable generalization performance to ELM-TV. On the other hand, OS-
ELM-TV consumes much less training time when updating the output weights
in the applications in which the training data set arrived sequentially. Especially
in the case of large number of hidden nodes and large number of output bases, as
shown in Table 3 for electricity load estimation task, once the TV-NN receives a
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Basis Function Algorithms Training Validation Training
(#input, #output) RMSE(dB) RMSE(dB) Time (s)

None(1,1)
ELM -14.84 -14.83 0.0123

OS-ELM -14.66 -14.64 0.0002

Legendre(3,1)
ELM-TV -12.90 -12.90 0.0173

OS-ELM-TV -12.90 -12.91 0.0003

Legendre(1,3)
ELM-TV -15.74 -15.69 0.0616

OS-ELM-TV -15.45 -15.41 0.0004

Legendre(3,3)
ELM-TV -13.98 -13.92 0.0781

OS-ELM-TV -14.07 -14.03 0.0004

Chebyshev(1,3)
ELM-TV -15.62 -15.60 0.0656

OS-ELM-TV -15.60 -15.59 0.0004

Prolate(1,3)
ELM-TV -15.74 -15.71 0.0679

OS-ELM-TV -15.69 -15.67 0.0004

Fourier(1,3)
ELM-TV -15.41 -15.40 0.0607

OS-ELM-TV -15.32 -15.30 0.0004

Table 3. Performance Comparisons of ELM-TV and OS-ELM-TV with different basis
functions and number of input/output bases when updating the 2000th sample in
electricity load estimation task, with 30 hidden nodes.

new training sample, OS-ELM-TV takes only about 0.4 milliseconds to update
its output weights, while ELM-TV takes more than 60 milliseconds to retrain
its network.

7 Conclusions

As a learning technique for nonstationary environments, ELM-TV and its vari-
ants have shown good potentials to resolving regression problems. However, there
are some open issues on ELM-TV worth investigating in the future.

– As the most important parameters in ELM-TV, the number of hidden nodes
or the number of basis functions can be determined by EM-ELM-TV or
EM-OB respectively. How to develop a joint incremental approach to set the
optimal numbers of both hidden nodes and basis functions remains open.

– ELM-TV and its variants aim at nonstationary environment. More applica-
tions in this categaory are to be tested to further verify the effectiveness of
these algorithms.
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